Listy Biometryczne - Biometrical Letters Vol. 35(1998), No. 2, 127-132

Optimality of some experimental designs under mixed effects linear model*

Augustyn Markiewicz**

Department of Mathematical and Statistical Methods, Agricultural University of Poznań, Wojska Polskiego 28, 60-637 Poznań, Poland

SUMMARY

A design which is universally optimal for estimating a given set of parameters under the fixed effects model is also universally optimal for estimating a reduced set of parameters under the related mixed effects model. The aim of the paper is to study conditions under which a design universally optimal in the model without random effects (i.e. a model in which variances of random effects are zero) is also universally optimal in the mixed effects model. Using the Kiefer ordering some sufficient conditions are established.

KEY WORDS: mixed effects model, Schur complement, G-majorization, Kiefer ordering, Kiefer optimality, optimal experimental designs, row-column designs, repeated measurements designs.

1. Introduction and preliminaries

Consider the linear model associated with the design $d \in \mathcal{D}$

$$\mathbf{y} = \mathbf{X}_{1,d} \boldsymbol{\vartheta}_1 + \mathbf{X}_{2,d} \boldsymbol{\vartheta}_2 + \mathbf{X}_{3,d} \boldsymbol{\vartheta}_3 + \boldsymbol{\varepsilon} , \qquad (1)$$

where $\mathbf{X}_{i,d} \in \mathbb{R}^{n \times r_i}$, i = 1, 2, 3, are known, ε is a random error with $E(\varepsilon) = \mathbf{0}$, $Cov(\varepsilon) = \mathbf{I}_n$ and ϑ_i are parameters vectors. Further, let $\mathbf{C}_{d,q}$, $q \in \{0, \infty, V\}$ denote information matrices of d for estimating ϑ_1 in a model \mathcal{M}_q under normality, where

^{*}The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Caliński.

^{**}Research partially supported by the KBN Grant No. 2PO3A020 14.

the underlying model is

 \mathcal{M}_0 model (1) without $\boldsymbol{\vartheta}_2$ (i.e., $\boldsymbol{\vartheta}_2 = \mathbf{0}$), \mathcal{M}_{∞} model (1) with fixed, non-random $\boldsymbol{\vartheta}_2$, \mathcal{M}_V model (1) with random effects $\boldsymbol{\vartheta}_2$ uncorrelated with $\boldsymbol{\varepsilon}$. $E(\boldsymbol{\vartheta}_2) = \mathbf{0}$, and $Cov(\boldsymbol{\vartheta}_2) = \mathbf{V}$, (known).

Following Kunert (1983) models $\mathcal{M}_0, \mathcal{M}_{\infty}$, and \mathcal{M}_V can be called the simpler model, the finer fixed model, and the finer mixed model, respectively.

The information matrices $\mathbf{C}_{d,q}$ can be expressed as the Schur complement of $\mathbf{T}_{d,q}$ in $\mathbf{M}_{d,q}$, i.e.

$$\mathbf{C}_{d,q} = [\mathbf{M}_{d,q}/\mathbf{T}_{d,q}], \ q \in \{0, \infty, V\}, \tag{2}$$

where

$$egin{array}{lll} \mathbf{M}_{d,0} &=& \left(\mathbf{X}_{i,d}'\mathbf{X}_{j,d}
ight)_{i,j\in\{1,3\}}, \ & \mathbf{M}_{d,\infty} &=& \left(\mathbf{X}_{i,d}'\mathbf{X}_{j,d}
ight)_{1\leq i,j\leq 3}, \ & \mathbf{M}_{d,V} &=& \left(\mathbf{X}_{i,d}'(\mathbf{I}_n+\mathbf{X}_{2,d}\mathbf{V}\mathbf{X}_{2,d}')^{-1}\mathbf{X}_{j,d}
ight)_{i,j\in\{1,3\}}, \ & \mathbf{T}_{d,0} &=& \left(\mathbf{X}_{3,d}'\mathbf{X}_{3,d}, \ & \mathbf{T}_{d,\infty} &=& \left(\mathbf{X}_{i,d}'\mathbf{X}_{j,d}
ight)_{2\leq i,j\leq 3}, \ & \mathbf{T}_{d,V} &=& \mathbf{X}_{3,d}'(\mathbf{I}_n+\mathbf{X}_{2,d}\mathbf{V}\mathbf{X}_{2,d}')^{-1}\mathbf{X}_{3,d}, \end{array}$$

see e.g. Pukelsheim (1993, Chapter 3). Recall that for a given nonnegative-definite $k \times k$ matrix $\mathbf{A} = (\mathbf{A}_{i,j})_{1 \le i,j \le 2}$ the Schur complement of \mathbf{A}_{22} in \mathbf{A} is

$$[\mathbf{A}/\mathbf{A}_{22}] = \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-}\mathbf{A}_{21}, \tag{3}$$

where A_{22}^- is a g-inverse of A_{22} .

In the sequel the symbols $\mathrm{NND}(n)$ and $\mathrm{Ort}(n)$ will denote the set of all $n \times n$ nonnegative-definite matrices and the set of all $n \times n$ orthogonal matrices, respectively. Let \mathcal{H} be a subgroup of $\mathrm{Ort}(k)$ and let $\Phi(\mathcal{H})$ be a class of all functionals φ on $\mathrm{NND}(k)$ satisfying the following conditions:

- (a) φ is concave,
- (b) φ is isotonic (increasing) with respect to the Loewner partial ordering,
- (c) φ is \mathcal{H} -invariant, i.e. $\varphi(\mathbf{A}) = \varphi(\mathbf{H}\mathbf{A}\mathbf{H}')$ for every $\mathbf{A} \in \text{NND}(k)$ and $\mathbf{H} \in \mathcal{H}$.

A design d^* will be termed universally optimal w.r.t. $\Phi(\mathcal{H})$ over the class \mathcal{D} of designs under consideration if d^* maximizes $\varphi(\mathbf{C}_d)$ for every functional $\varphi \in \Phi(\mathcal{H})$; see e.g. Kiefer (1975), Giovagnoli et al. (1987) and Pukelsheim (1993).

In Section 2 we investigate conditions under which a design universally optimal for estimating ϑ_1 in \mathcal{M}_0 preserves its optimality in \mathcal{M}_V . These conditions are imposed

on the information matrix

$$\mathbf{W}_d = \left[\mathbf{M}_{d,\infty} / \mathbf{X}_{3,d}' \mathbf{X}_{3,d} \right] \tag{4}$$

for estimating simultaneously ϑ_1 and ϑ_2 in the fixed effects model \mathcal{M}_{∞} . It is based on the functional relationships between information matrices $\mathbf{C}_{d,q}$ and \mathbf{W}_d . In particular $\mathbf{C}_{d,V}$ can be expressed as

$$\mathbf{C}_{d,V} = \left[\mathbf{W}_{d,V} / (\mathbf{V}^{1/2} \mathbf{X}_{2,d}' \mathbf{Q}_{X_{3,d}} \mathbf{X}_{2,d} \mathbf{V}^{1/2} + \mathbf{I}_{r_2}) \right], \tag{5}$$

where

$$\mathbf{W}_{d,V} = \mathbf{\Lambda} \mathbf{W}_d \mathbf{\Lambda} + \operatorname{diag}(\mathbf{0}, \mathbf{I}_{r_2}) \tag{6}$$

with $\Lambda = \operatorname{diag}(\mathbf{I}_{r_1}, \mathbf{V}^{1/2})$, while $\mathbf{Q}_L = \mathbf{I}_m - \mathbf{L}(\mathbf{L}'\mathbf{L})^-\mathbf{L}'$ denotes the orthogonal projectors on the orthocomplement of $\operatorname{Im}(\mathbf{L})$, the range of a given $m \times n$ matrix \mathbf{L} . For more details see Markiewicz (1997, Theorem 1).

2. Optimality results

First we recall a notion of the Kiefer ordering and the Kiefer optimality; cf. Pukelsheim (1993). Given two symmetric matrices \mathbf{A} and $\mathbf{B} \in \operatorname{Sym}(k)$ and the group $\mathcal{H} \subseteq \operatorname{Ort}(k)$, we say that \mathbf{A} is below \mathbf{B} w.r.t. the *Kiefer ordering* relative to \mathcal{H} (\mathbf{B} is more informative than \mathbf{A}) and we write $\mathbf{A} \ll_{\mathbf{H}} \mathbf{B}$ when \mathbf{B} is better in the Loewner ordering than some matrix \mathbf{D} which is H-majorized by \mathbf{A} , i.e.

$$\mathbf{A} \ll_{\mathsf{H}} \mathbf{B} \iff \mathbf{D} \preceq_{L} \mathbf{B} \text{ for some } \mathbf{D} \in Sym(k) \text{ such that } \mathbf{D} \prec_{\mathsf{H}} \mathbf{A},$$

where $\mathbf{D} \prec_{\mathbf{H}} \mathbf{A}$ means that $\mathbf{D} \in conv\{\mathbf{H}\mathbf{A}\mathbf{H}' : \mathbf{H} \in \mathcal{H}\}$ while $\mathbf{D} \preceq_{L} \mathbf{B}$ means that $\mathbf{B} - \mathbf{D} \in \mathrm{NND}(k)$. A sufficient condition of maximality of a matrix \mathbf{A}_{0} in \mathcal{A} w.r.t. the Kiefer ordering related to \mathcal{H} is its \mathcal{H} -symmetry, i.e. $\mathbf{A}_{0} = \mathbf{H}\mathbf{A}_{0}\mathbf{H}'$ for all $\mathbf{H} \in \mathcal{H}$, and its maximality w.r.t. the Loewner ordering over the set of \mathcal{H} -centers: $\{\bar{\mathbf{A}}, \mathbf{A} \in \mathcal{A}\}$, where the \mathcal{H} -center $\bar{\mathbf{A}}$ of \mathbf{A} is the average of $\mathbf{H}\mathbf{A}\mathbf{H}'$ over $\mathbf{H} \in \mathcal{H}$; cf. Pukelsheim (1993, Ch. 14).

A design d^* will be termed *Kiefer optimal* w.r.t. the group \mathcal{H} over the class \mathcal{D} of designs under consideration if $\mathbf{C}_d \ll_{\mathbf{H}} \mathbf{C}_{d^*}$ for all $d \in \mathcal{D}$. Evidently the Kiefer optimality w.r.t. \mathcal{H} implies the universal optimality w.r.t. $\Phi(\mathcal{H})$.

In the context of estimation of ϑ_1 and ϑ_2 simultaneously we will consider a relabelling group $\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2$, a direct sum of \mathcal{G}_1 and \mathcal{G}_2 , compact subgroups of $\operatorname{Ort}(r_1)$ and $\operatorname{Ort}(r_2)$, respectively. The subset of $\operatorname{NND}(k)$ consisting of all matrices symmetric with respect to the group \mathcal{H} , i.e. matrices $\mathbf{A} \in \operatorname{NND}(k)$ such that $\mathbf{H}\mathbf{A}\mathbf{H}' = \mathbf{A}$ for all $\mathbf{H} \in \mathcal{H}$, will be denoted by $\operatorname{NND}(k,\mathcal{H})$. The following proposition will be useful in the sequel; see Markiewicz (1997, Corollary 2).

PROPOSITION. If a design $d^* \in \mathcal{D}$ is Kiefer optimal w.r.t. $\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2$ for estimating ϑ_1 and ϑ_2 simultaneously over \mathcal{D} in \mathcal{M}_{∞} then d^* is Kiefer optimal w.r.t. \mathcal{G}_1 for estimating ϑ_1 in models $\mathcal{M}_0, \mathcal{M}_{\infty}$ and in \mathcal{M}_V provided $\mathbf{V} \in \text{NND}(r_2, \mathcal{G}_2)$.

Let \mathcal{D} denote the set of designs under consideration and let $\mathcal{D}^* \subseteq \mathcal{D}$ denote the set of all $d \in \mathcal{D}$ which are Kiefer optimal w.r.t. \mathcal{G}_1 for estimating ϑ_1 over \mathcal{D} in \mathcal{M}_0 . We seek a design $d^* \in \mathcal{D}^*$ which is universally optimal w.r.t. $\Phi(\mathcal{G}_1)$ in \mathcal{M}_V . We will consider two special cases corresponding to Strategy 1 and 2 in Kunert (1983).

CASE 1. Assume that there is a $d^* \in \mathcal{D}^*$ fulfilling the adjusted orthogonality condition

$$\mathbf{X}_{1,d}'\mathbf{Q}_{X_{3,d}}\mathbf{X}_{2,d} = \mathbf{0},\tag{7}$$

i.e. \mathbf{W}_{d^*} is a block-diagonal matrix with left upper block equal to $\mathbf{C}_{d^*,0}$. Then from (4), (5), (6), and (7) it follows that $\mathbf{C}_{d^*,0} = \mathbf{C}_{d^*,\infty} = \mathbf{C}_{d^*,V}$ and

$$\mathbf{C}_{d,\infty} \ll^{\mathsf{G}_1} \mathbf{C}_{d^*,0}, \ \mathbf{C}_{d,V} \ll^{\mathsf{G}_1} \mathbf{C}_{d^*,0} \text{ for all } d \in D \text{ and arbitrary } \mathbf{V} \in \mathrm{NND}(r_2).$$

It means that d^* is universally optimal w.r.t. $\Phi(\mathcal{G}_1)$ over \mathcal{D} in \mathcal{M}_{∞} as well as in \mathcal{M}_V for arbitrary $\mathbf{V} \in \text{NND}(r_2)$.

If no design $d \in \mathcal{D}^*$ fulfils its adjusted orthogonality condition (7) we will proceed in the following way.

Case 2. Find a $d^* \in D^*$ such that

$$\mathbf{W}_d \ll_{\mathsf{G}} \mathbf{W}_{d^*}$$
 for all $d \in \tilde{\mathcal{D}} \subseteq \mathcal{D}$.

Then d^* is Kiefer optimal w.r.t. \mathcal{G} for estimating ϑ_1 and ϑ_2 simultaneously over $\tilde{\mathcal{D}}$ in \mathcal{M}_{∞} . According to Proposition d^* is also universally optimal w.r.t. $\Phi(\mathcal{G}_1)$ for estimating ϑ_1 over $\tilde{\mathcal{D}}$ in \mathcal{M}_{∞} as well as in \mathcal{M}_V for any $\mathbf{V} \in \text{NND}(r_2, \mathcal{G}_2)$.

3. Examples

3.1. Row-column designs for comparing treatments with a control

Consider the set \mathcal{D} of row-column designs for comparing t test treatments with a control treatment, say 0, in which ab experimental units are arranged in the form of an $a \times b$ array of entries from the set $\{0, 1, 2, ..., t\}$, with $r_0/a = k_0$ and $(b - k_0)/t$ integers, where r_0 is a fixed number of replications of the 0 treatment. Now, in model (1) notation $\vartheta_1, \vartheta_2, \vartheta_3$ are vectors of treatments effects, rows effects, and columns effects, respectively. Let \mathcal{D}^* be the set of BTB (BTIB) designs on columns, i.e. designs which are Kiefer optimal w.r.t. $\mathcal{G}_1 = \{1\} \oplus \mathcal{P}_t$, for estimating ϑ_1 over \mathcal{D} in \mathcal{M}_0 , where \mathcal{P}_t denotes the set of all $t \times t$ permutation matrices; see e.g. Bechhofer and Tamhane

(1981). Further, let $\mathbf{N}_{1,d} \in \mathbb{R}^{t+1 \times a}$ and $\mathbf{N}_{2,d} \in \mathbb{R}^{t+1 \times b}$ be the incidence matrices of treatments vs. rows and treatments vs. columns, respectively. In this case, the matrix \mathbf{W}_d can be written as

$$\mathbf{W}_d = \left(\begin{array}{cc} \mathbf{r}_d^\delta - 1/a(t+1)\mathbf{N}_{2,d}\mathbf{N}_{2,d}' & \mathbf{N}_{1,d} - 1/a\mathbf{N}_{2,d}\mathbf{J}_{ba} \\ \\ \mathbf{N}_{1,d}' - 1/a\mathbf{J}_{ab}\mathbf{N}_{2,d}' & bt\mathbf{I}_a - (t+1)/a\mathbf{J}_{aa} \end{array} \right),$$

where $\mathbf{r}_d = \mathbf{N}_{1,d}\mathbf{1}_a = \mathbf{N}_{2,d}\mathbf{1}_b$ is a vector of replications and $\mathbf{r}_d^{\delta} = \operatorname{diag}(r_{0d}, r_{1d}, ..., r_{td})$. For a design $d^* \in \mathcal{D}^*$ which has treatments equally replicated, and the total number of replications for each treatment, test or control, divided equally among the a rows, the adjusted orthogonality condition (7) holds, i.e. $\mathbf{N}_{1,d} - (1/a)\mathbf{N}_{2,d}\mathbf{J}_{ba} = \mathbf{0}$. Then, according to CASE 1, d^* is universally optimal w.r.t. $\Phi(\{1\} \oplus \mathcal{P}_t)$ for estimating treatment effects in the models \mathcal{M}_{∞} (see e.g. Hedayat et al., 1988; Giovagnoli and Verdinelli, 1988, p. 484) and \mathcal{M}_V with $\mathbf{V} \in \mathrm{NND}(a)$.

3.2. Repeated measurements designs

Consider the set $\mathcal{D} = \Lambda_{t,n,p}$ of all non-circular repeated measurements designs, abbreviated as $\mathrm{RMD}(t,n,p)$, in which no treatment is allowed to be preceded by itself. A model for $\mathrm{RMD}(t,n,p)$ is usually written as

$$\mathbf{Y}_d = \mathbf{G}_d \boldsymbol{\tau} + \mathbf{F}_d \boldsymbol{\rho} + \mathbf{P} \boldsymbol{\alpha} + \mathbf{U} \boldsymbol{\beta} + \mathbf{e},$$

where τ is the vector of direct treatment effects, ρ the vector of residual effects, α the vector of period effects, and β the vector of effects of units; see e.g. Cheng and Wu (1980), and Kunert (1983). In model (1) notation,

$$\mathbf{X}_{1,d} = \mathbf{G}_d, \ \mathbf{X}_{2,d} = (\mathbf{F}_d : \mathbf{P}), \ \mathbf{X}_{3,d} = \mathbf{U},$$

while

$$\boldsymbol{\vartheta}_1 = \boldsymbol{ au}, \; \boldsymbol{\vartheta}_2 = (\boldsymbol{
ho}', \boldsymbol{lpha}')', \; \boldsymbol{\vartheta}_3 = \boldsymbol{eta}.$$

Let \mathcal{D}^* be the set of all balanced block designs on the units, i.e. designs which are universally optimal (and Kiefer optimal w.r.t. \mathcal{P}_t) for estimating τ over \mathcal{D} in \mathcal{M}_0 . Suppose that for every $d \in \mathcal{D}$ the adjusted orthogonality condition (7) does not hold. Further, Suppose that in \mathcal{D}^* there is a balanced uniform design d^* . From Proposition 2 in Markiewicz (1997) it follows that d^* is Kiefer optimal w.r.t. $\mathcal{G} = (\mathbf{I}_2 \otimes \mathcal{P}_t) \oplus \{\mathbf{I}_p\}$ for estimating τ , ρ , and α simultaneously over $\tilde{\mathcal{D}} \subseteq \Lambda_{t,n,p}$, the set of designs which are uniform on units and the last period, in M_{∞} . Then, according to CASE 2, d^* is universally optimal (w.r.t. $\Phi(\mathcal{P}_t)$) for estimating τ over $\Lambda_{t,n,p}$ in \mathcal{M}_{∞} and in \mathcal{M}_V with $\mathbf{V} \in \text{NND}(t+p, P_t \oplus \{\mathbf{I}_p\})$.

REFERENCES

- Bechhofer, R.E. and Tamhane, A.C. (1981). Incomplete block designs for comparing treatments with a control: General theory. *Technometrics* 23, 45-57.
- Cheng, C.S. and Wu, C.F. (1980). Balanced repeated measurements designs. *Ann. Statist.* 8, 1272-1283. Corrigenda: *Ann. Statist.* 11, 349.
- Giovagnoli, A., Pukelsheim, F. and Wynn, H.P. (1987). Group invariant orderings and experimental designs. J. Statist. Plann. Inference 17, 159-171.
- Giovagnoli, A. and Verdinelli, I. (1988). Comment to: Optimum designs for comparing test treatments with controls by A.S. Hedayat, M. Jacroux and D. Majumdar. Statistical Science 3, 482-484.
- Hedayat, A.S., Jacroux, M. and Majumdar, D. (1988). Optimum designs for comparing test treatments with controls. *Statistical Science* 3, 462-476.
- Jones, B., Kunert, J. and Wynn, H.P. (1992). Information matrices for mixed effects models with applications to the optimality of repeated measurements designs. J. Statist. Plann. Inference 33, 261-274.
- Kiefer, J. (1975). Construction and optimality of generalized Youden designs. In: J.N. Srivastava, Ed., A Survey of Statistical Designs and Linear Models. North-Holland, Amsterdam.
- Kunert, J. (1983). Optimal design and refinement of the linear model with applications to repeated measurements designs. *Ann. Statist.* 11, 247-257.
- Markiewicz, A. (1997). Properties of information matrices for linear models and universal optimality of experimental designs. J. Statist. Plann. Inference 59, 127-137.
- Pukelsheim, F. (1993). Optimal Designs of Experiments. Wiley, New York.

Received 24 September 1998

Optymalność pewnych układów doświadczalnych w mieszanym modelu liniowym

STRESZCZENIE

Układ, który jest uniwersalnie optymalny dla estymacji danego zbioru parametrów w modelu stałym jest również uniwersalnie optymalny dla estymacji zredukowanego zbioru parametrów w odpowiednim modelu mieszanym. Celem pracy jest zbadanie warunków, przy których układ uniwersalnie optymalny w modelu bez efektów losowych (tzn. w modelu, w którym wariancje efektów losowych są równe zero) jest również uniwersalnie optymalny w modelu mieszanym. Wyprowadzono pewne warunki dostateczne z wykorzystaniem porządku Kiefera.

Słowa kluczowe: model mieszany, uzupełnienie Schura, majoryzacja grupowa, porządek Kiefera, optymalne układy eksperymentalne, układy wierszowo-kolumnowe, układy z powtarzanymi pomiarami.